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Based on the theory of the permutation group and the Rayleigh± Schro$ dinger
perturbation theory, a systematic procedure is developed for the calculation of

interatomic potentials. When this method is applied to the H
#

molecule, the triplet

(t) and singlet (s) energies are given by

E
t, s

= 3
N

n = !

e n 1 0 3
N Õ "

n = !

sn ‰1 1 e
x
,

where e n and sn are the nth-order polarization energy and overlap integral

respectively, and e
x

is the exchange energy de® ned as e
x
= (E

t
– E

s
) } 2. With N = 1,

this expression is shown to be identical with the usual Heitler± London energy ;

therefore this method is called generalized Heitler± London (GHL) theory. When e
x

is expanded in terms of the Coulomb integral and the exchange integral, many
previous symmetry-adapted perturbation theories are shown to be subsets of this

expansion. The advantage of the GHL theory is that, instead of using the

approximate exchange integrals, the exchange energy calculated from the surface
integral method can be used directly. After a careful examination of the surface

integral method for H+
#

and H
#
, the exchange energy in a multielectron diatomic

system is shown to be equal to the exchange energy of a single electron pair times
a constant which can be obtained from a simple counting procedure. According to

this theory, the energy curves of van der Waals potentials depend only on the

known dispersion coe� cients, the amplitude of the asymptotic wavefunctions, and
the ionization energy of the individual atoms. With a simple analytical expression,

potentials of many diŒerent diatomic systems are predicted with a high degree of

accuracy. The GHL theory is also applied to the triatomic H
$

system. Many
previous semiempirical surfaces including the well known London ± Eyring±

Polanyi± Sato surface are examined in the light of the present result. In particular,

the Cashion± Herschbach surface is shown to encompass far more information
than previously recognized. The new theory now contains all the terms needed for

an exact calculation.
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1. Introduction

The interatomic potential is of fundamental importance for understanding the

static and the dynamic properties of gases, liquids and solids. The foundation of the

theory of interatomic potentials was laid in the year of 1927. In that year the chemical

bond of the singlet state of the H
#

molecule was successfully described by Heitler and

London [1] using a symmetrized wavefunction. The calculation showed that the

stabilization of the bond is provided by the exchange integral. The same calculation

also demonstrated that the exchange integral is responsible for the repulsive potential

of the triplet state. In the same year, Wang [2] pointed out that there is always a long-
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GHL theory for interatomic interaction 365

range attraction between any pair of atoms, which is now known as the dispersion

energy and is due to the interaction of a dipole with an instantaneous induced dipole.

This long-range attraction together with the exchange repulsion are the origin of the

so-called van der W aals potential between systems which do not form a chemical

bond. Thus the exchange integral plays an important role in both the chemical and the

van der W aals potentials.

While the basic physics of the interatomic potentials has been clear, the precise

determination, especially of the weak van der Waals potentials, is still very di� cult.

W ith the advent of computers, the interaction potentials can in principle be calculated

exactly through the variational molecular orbital methods. Problems associated with

correlation con® gurations and basis set superpositions, however, complicate such ab

initio calculations [3]. Essentially the di� culties arise from the errors inherent in the

subtraction of the enormous energies of the separated atoms from the only slightly

diŒerent energy of the interacting atoms. In recent years, quantum M onte Carlo

methods have been used with considerable success [4], but such calculations provide

little insight into the physical processes underlying the interaction. These problems are

avoided in a perturbation calculation in which the potential is obtained directly.

However, the correct symmetrization of the wavefunction has in the past led to

di� cult formal problems [5].

The only perturbation scheme that can be carried out systematically and with

relative ease is the unsymmetrized Rayleigh ± Schro$ dinger perturbation theory also

commonly known as the polarization approximation [6]. The second-order polar-

ization energy expressed in terms of the 1 } R expansion is the well known induction

and } or dispersion series [7], which if corrected for charge overlap [8] provides an

excellent description of the long-range attraction [9]. However, until recently, it was

generally believed that the exchange repulsion cannot be obtained from this theory.

Therefore a large amount of eŒort has been devoted to the development of the so-

called symmetry-adapted perturbation expansion (for a comprehensive survey of the

history of symmetry-adapted perturbation theory see [10]).

Quite independent of these developments, the direct calculation of the exchange

energy by a surface integral was ® rst independently proposed in early 1950’ s by Firsov

[11] and Holstein [12] in connection with the H+
#

problem. This theory is based on the

physical concept of the single electron hopping back and forth between the two

protons. Using this approach, Herring [13] and Landau and Lifshitz [14] obtained the

correct asymptotic exchange energy of the hydrogen molecular ion. This method was

subsequently extended to treat the exchange of two electrons [15]. W ith this method,

Herring and Flicker [16] were the ® rst to obtain the correct asymptotic exchange

energy of the hydrogen molecule. Although Herring [13, 17] was guided by the

physical picture of the electron ¯ owing back and forth, he was able to prove rigorously

with a mathematical theorem that the result is asymptotically exact. Later Smirnov

and Chibisov [18] extended this method to the alkali dimers. The generalization of this

method to multielectron systems was ® rst carried out by Umanskii and Voronin [19]. In

1970, Duman and Smirnov [20] showed that the exchange energy of the multielectron

system can be expressed as a product of the exchange energy of a single pair of

electrons and an angular momentum factor to account for the equivalence of the

valence electrons. Subsequently this approach was only pursued by Russian groups

[21, 22] and only in a few instances [23, 24] in the western literature. Only recently have

several groups [25± 28] including our own [29, 30] analysed and further developed the

surface integral method for the exchange energy.
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366 K . T . Tang et al.

The exchange energy is closely related to the exchange integral but they are not

identical. There are important diŒerences which can be best illustrated by an example.

In the familiar form of the Heitler± London theory, the wavefunction W
t
of the triplet

and the wavefunction W
s

of the singlet states of the H
#

molecule are given by (for

example [31])

W
t
=

1

[2(1– s
!
)] " / #

( r U
!
ª – T(12) r U

!
ª ), (1)

W
s
=

1

[2(1 1 s
!
)] " / #

( r U
!
ª – T(12) r U

!
ª ), (2)

with

s
!
= © U

!
r T(12) r U

!
ª , (3)

where U
!

is given by the product of the undisturbed hydrogenic wavefunctions of atom

A with electron 1 and atom B with electron 2

U
!
= u

A
(1) u

B
(2). (4)

The exchange of electron 1 and 2 is indicated by the transposition T(12). Furthermore,

for abbreviation we shall use the following notation :

T(12) r U
!
ª = r u

A
(2) u

B
(1) ª = r U !

!
ª . (5)

Thus s
!

in equation (3) is the overlap integral. The corresponding triplet E
t
and singlet

E
s

energies are

E
t
= e

!
1

J – K

1 – s
!

, (6)

E
s
= e

!
1

J 1 K

1 1 s
!

, (7)

with

J = © U
!
r V r U

!
ª , (8)

K = © U
!
r VT(12) r U

!
ª , (9)

where the zeroth-order energy e
!

is simply the sum of the energies of the two

undisturbed atoms. W ith the perturbing Hamiltonian V, the integral J de® ned in

equation (8) is commonly known as the Coulomb integral. The exchange integral K

given by equation (9) is of dominant importance in this theory.

The exchange energy e
x

and the Coulomb energy e
C

are usually de® ned as

e
x
= "

#
(E

t
– E

s
), (10)

e
C

= "
#
(E

t
1 E

s
). (11)

Putting equations (6) and (7) into equation (10), we have

e
x
=

s
!
J – K

1 – s #
!

. (12)

W ith equations (6), (7) and (12), it follows from equation (11) that

e
C

= e
!
1 e

"
1 s

!
e
x
, (13)

where we have used the fact that the ® rst-order polarization energy e
"

of the
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GHL theory for interatomic interaction 367

unsymmetrized perturbation theory (see section 2.3) is equal to the Coulomb integral

J. It is to be noted that the Coulomb energy is not equal to the Coulomb integral, nor

is the Coulomb energy equal to the polarization energy.

The exchange integral in equation (9) depends on the zeroth-order approximation

of the wavefunction. For a higher order of approximation, the corresponding

exchange integral will of course be diŒerent. Since it changes from order to order, it

would be di� cult to assign a physical meaning to the exchange integral. On the other

hand, the exchange energy in equation (10) depends on the eigenenergies of the system.

It is a de® nitive quantity and is fundamental for understanding not only covalent

chemical bonding, but also charge exchange in atomic collisions [32] and magnetism

in many-body systems [17]. From equation (12), it is seen that in this approximation

the exchange integral is equal to the negative of the exchange energy when the overlap

integral s
!

is equal to zero.

By taking the diŒerence and the sum of equations (11) and (10), and using equation

(13), the Heitler± London energies E
t

and E
s

can be expressed in terms of e
x
:

E
t
= e

!
1 e

"
1 (s

!
1 1) e

x
, (14)

E
s
= e

!
1 e

"
1 (s

!
– 1) e

x
. (15)

Based on the unsymmetrized perturbation theory, Tang and Toennies [33, 34]

developed a generalized Heitler± London (GHL) theory. In this theory the energy

expressions appear to be identical with equations (14) and (15), except that both the

polarization energy and the overlap integral contain higher-order terms. The de® nition

of the exchange energy e
x

remains the same as given by equation (10).

In the next section, the GHL equation is developed from the viewpoint of the

group theory. The advantage of the group theory approach is that the proper

symmetry required by the Pauli principle of the electron exchange is built into the

formulation. This is especially important for the systematic development of the theory

for polyatomic systems.

In section 3, many symmetry-adapted perturbation theories (SAPTs) [35], such

as those of Heitler± London [1], M urrell± Shaw (MS) [36], M usher± Amos (MA) [37],

Jeziorski et al. [38] and Hirschfelder± Silbey [39], are shown to be subsets of the

solutions of the GHL equation when it is expanded in terms of exchange integrals. The

energy expressions obtained from the GHL equation are often more compact and

transparent than those originally appearing in the SAPT.

A great advantage of the GHL theory is that the exchange energy obtained from

the surface integral method can be used directly. After a careful examination of the

exchange in H+
#

and H
#
, the surface integral methods for the exchange energy in

multielectron ionic and neutral diatomic systems are reviewed in section 4. The

coupling constant of Duman and Smirnov [20] is rederived and the original result is

shown to be incorrect. The correct result is shown to be equal to the number of possible

exchanges between the valence electrons with the same spin in the two atoms. In

principle the surface integral method can be used to calculate the exchange energy for

all interatomic distances. It is particularly useful in the asymptotic region, where the

exchange energy can be expressed analytically.

In section 5, we ® rst show that the potential of the chemical bond can be calculated

by the GHL theory. However, it is for calculating the van der W aals potential that the

GHL theory is most powerful. For many systems, the range of validity of the

aysmptotic exchange energy expression includes the well region of the van der W aals

potential. For these systems, the potentials predicted by the GHL theory are
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368 K . T . Tang et al.

remarkably accurate. The GHL theory also naturally leads to the Tang± Toennies

potential model which enables us to calculate a wide range of potentials of diŒerent

systems with a universal analytical expression.

Another diŒerence between the energies expressed in terms of the exchange

integral and in terms of the exchange energy is that the denominator in equations (6)

and (7) becomes a part of an additive term in equations (14) and (15). This is also the

diŒerence between the SAPT and the GHL theory. Without the factor 1 ‰s
!

in the

denominator, the GHL theory oŒers some conceptual and computational simpli ® -

cations, especially when it is applied to polyatomic systems. In section 6, the GHL

theory is developed for the all-important H
$

potential surface as a speci® c example.

M any previous semiempirical surfaces for this system including the well known

London ± Eyring± Polanyi± Sato (LEPS) surface are examined in the light of the present

results. In particular, the Cashion± Herschbach [40] surface is shown to encompass far

more information than previously recognized. The new theory now contains all the

terms needed for an exact calculation.

The paper closes with some concluding remarks in section 7. In this paper, the

Born± Oppenheimer approximation neglecting the nuclear motion is assumed to be

valid, and atomic units are used unless otherwise speci ® ed.

2. Group theory and generalized Heitler± London equation

Since the electrons are indistinguishable particles and have to obey the Pauli

exclusion principle, the solution of the electronic Schro$ dinger equation must be

properly symmetrized. The symmetrization of the wavefunction, while absolutely

necessary, makes the problem considerably more complicated. Group theory [41, 42]

is a natural tool for the purpose of reducing the complication to its simplest level.

Through its irreducible representations, the matrix elements of the Hamiltonian

are decoupled as far as possible. An n-electron system will be an invariant under

the transformation of the Sn symmetry group. In this section, we shall ® rst list

some well known elements of the symmetry group [43, 44] for the clari ® cation of the

notation. Then we shall transform the Schro$ dinger equation into a GHL equation.

The elaboration of this equation will start in the next section.

2.1. Group theory and quantum mechanics [41]

Let G be a group

G = {g
"
, g

#
, ¼ , g

N
}, (16)

where N is the order of the group. In the case of the symmetry group Sn , N = n !. It is

understood that the ® rst element g
"

is the identity I. Furthermore, let D a (g), a = 1, 2, I
be the irreducible unitary matrix representations of g. Then they satisfy the following

orthogonal conditions:

3
g

D $
a

ij
(g) D a ´

i ´j´
(g) =

N

n a

d a a ´ d ii ´ d jj ´
(17)

and

3
n

D

a = "

3
n

a

i = "

3
n

a

j= "

n a

N
D $

a
ij

(g) D a
ij
(g´) = d

gg ´, (18)

where n
D

denotes the number of diŒerent irreducible representations, n a is the

dimension of the representation a , and D* denotes the complex conjugate of D .
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GHL theory for interatomic interaction 369

For each element of the group, there is a unitary operator T(g) which is an operator

representation of g. For example, the permutation operators are the representations of

the symmetry group of identical particles. Functions transform under a symmetry

operation in accordance with an irreducible representation are basis functions of the

representation. That is, if {u a
ip

} are the basis functions of the representation a , then

T(g) u a
ip

= 3
j

u a

jp
D a

ji
(g). (19)

For each representation, a set of projection operators can be de® ned with the aid of the

irreducible matrix representations

P a
ij

=
n a

N
3
g

D $
a

ij
(g) T(g). (20)

Through these projection operators, basis functions can be generated from a single

function F :

u a
ij

= P a
ij

F. (21)

Furthermore, it can be shown that

F = 3
a

3
j

u a

jj
. (22)

If the Hamiltonian H of a system is invariant under the symmetry operations T(g)

of the group, then its eigenfunctions must also transform in accordance with the

irreducible representation of the group. In general the eigenfunction is a basis function

if the representation is one dimensional. If the dimension is greater than one, the basis

functions can be formed by a linear combination of the eigenfunctions belonging to

that representation. In addition, the matrix elements of the Hamiltonian with respect

to the basis functions must satisfy W igner’ s theorem [41, 45] :

© u a
ij

r H r u a ´
i ´j

ª́ = d ii ´ d a a ´ H
a

jj ´
. (23)

2.2. Generalized Heitler± London equation

To ® nd the equation that governs the function F that will project out a set of basis

functions which are linear combinations of the eigenfunctions, we ® rst assume that we

have at our disposal a set of basis functions {u a
ij
} that are already linear combinations

of the eigenfunctions. By equation (22), we can write

HF = 3
a

3
j

Hu a

jj
. (24)

Furthermore, with equations (21) and (20), u a

jp
can be projected out from F :

u a

jp
= P a

jp
F =

n a

N
3
g

D $
a

jp
(g) T(g) F. (25)

W ithout losing generality, {u a

jp
} can be taken as already orthonormalized [46]. Using

the W igner theorem of equation (23), we have

Hu a

jj
= 3

p

H a

pj
u a

jp
, (26)

therefore

HF = 3
a

3
j

3
p

H a

pj
u a

jp
. (27)
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370 K . T . Tang et al.

Substituting equation (25) into equation (27), we obtain

HF = 3
g

e
g
T(g) F, (28)

where

e
g
=

1

N
3

a

3
j

3
p

n a H a

pj
D $

a

jp
(g). (29)

Thus in order for the `primitive ’ function F to be able to generate basis functions

that are linear combinations of the eigenfunctions, it must satisfy equation (28). In the

next section we shall show that, in the case of the H
#

molecule, this equation is identical

with the GHL equation of Tang and Toennies [33, 34]. Therefore we shall designate

equation (28) with the same name, but with the advantage that it can be applied to

polyatomic systems. It is natural to call the quantity e
g

associated with T(g) the

generalized exchange energy. For example, if T(g) interchanges particles 1 and 2, then

e
g

is called the exchange energy e
" #

. In the case of the H
#

molecule, e
" #

happens to be

the negative of the exchange energy e
x

de® ned in equation (10). The energy e
I

associated with the identity operation is called the Coulomb energy, in accordance

with equation (11).

If e
g

can be independently calculated, the matrix elements of the Hamiltonian can

be obtained from equation (29) in the following way. M ultiplying D a

jp
(g) on both sides

of equation (29) and summing over g, it follows from the orthogonal condition of

equation (17) that

H a

pj
= 3

g

D a

jp
(g) e

g
. (30)

The eigenvalues can then be obtained by diagonalizing this matrix.

2.3. Unsymmetrized perturbation method and the generalized Heitler± London theory

If the total Hamiltonian is divided as

H = H
!
1 V , (31)

the equation in the unsymmetrized Rayleigh± Schro$ dinger perturbation (polarization)

theory [47, 48] given by

(H
!
1 k V ) F = E

p
F (32)

is solved by ® rst expanding the wavefunction and the energy according to

F = 3
n = !

k
n
U n , (33)

E
p
= 3

n = !

k
n
e n . (34)

The diŒerent orders of the polarization wavefunctions satisfy the following set of

equations:

(H
!
– e

!
) U

!
= 0, (35)

(H
!
– e

!
) U

"
1 (V – e

"
) U

!
= 0, (36)

and, for n & 2,

(H
!
– e

!
) U n 1 (V – e

"
) U n

Õ "
= 3

n

i = #

e i U n
Õ

i , (37)

with the condition

© U
!
, U n ª = d n , !

. (38)
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GHL theory for interatomic interaction 371

The zeroth-order energy is simply the eigenvalue of H
!

and the higher-order energies

are given by
e n + "

= © U
!
, V U n ª . (39)

We assume all the expansion series converge even for k = 1 [49] ; thus

HF = E
p

F, (40)
and

E
p
= 3

n = !

e n , (41)

F = 3
n = !

U n . (42)

Equating equations (40) and (28), we have

E
p

F = 3
g

e
g
T(g) F. (43)

Forming the inner product with © U
!
r , and using the orthogonal condition of equation

(38), this equation becomes

3
n = !

e n = e
I
1 3

g 1 I

3
n = !

e
g
© U

!
, T(g) U n ª . (44)

The eigenenergies can then be obtained from this equation. Thus, the GHL theory

consists of two parts. First the Schro$ dinger equation is solved by the unsymmetrized

Rayleigh± Schro$ dinger perturbation method ; then the proper symmetry is imposed by

requiring the solution to satisfy the GHL equation. These procedures will become

more transparent in the next section where we apply this theory to the H
#

molecule as

a speci® c example.

3. The generalized Heitler± London and symmetry-adapted perturbation theories

We shall apply the theory developed in the last section to the H
#

molecule as a

speci® c example. W e shall see that the ® rst-order energy reduces to the Heitler± London

energy. Higher-order energies of many SAPTs are shown to be subsets of the solutions

of the GHL equation. In addition the theory shows how to make use of the exchange

energy obtained from the surface integral for the total energy calculation.

A closely related problem is the H+
#

molecular ion. Pauling [50] was the ® rst to

apply the Heitler± London theory to the H+
#

system in 1928. Although, in this case, the

approach is now commonly known as linear combination of atomic orbitals, the

formalism is the same. Thus, if the singlet-state and triplet-state wavefunctions of the

H
#

molecule are replaced by the gerade and ungerade state wavefunctions respectively

of the H+
#

molecular ion, all the formulae derived for H
#

are equally applicable to H+
#
.

The speci® c results are of course diŒerent.

3.1. Generalized Heitler± London theory for the H
#

molecule and the

H+
#

molecular ion

In the case of H
#
, the symmetry group is S

#
= {I, (12)}. This group has two

irreducible representations A and B , and both are one dimensional :

DA(I ) = 1, (45)

DA(12) = 1, (46)
and

DB(I ) = 1, (47)

DB(12) =– 1. (48)
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372 K . T . Tang et al.

Since both are one dimensional, the eigenfunctions are basis functions. Clearly the

singlet symmetric state wavefunction W
s

is the basis function of the representation A ,

and the triplet antisymmetric state wavefunction W
t

that of the representation B .

Therefore

H A
" "

= © W
s
r H r W

s
ª = E

s
, (49)

H B
" "

= © W
t
r H r W

t
ª = E

t
. (50)

For this system, the generalized exchange energy of equation (29) becomes

e
g
=

1

N
3

a =A,B

n a H a

" "
D a

" "
(g). (51)

Since N = 2 and n
A

= n
B

= 1,

e
I
= "

#
(E

s
1 E

t
), (52)

e
" #

= "
#
(E

s
– E

t
). (53)

Thus equation (28) takes the form

HF = [ e
I
1 e

" #
T(12)] F. (54)

Comparing equations (52) and (53) with equations (10) and (11), we see that

e
I
= e

C
(55)

and

e
" #

=– e
x
. (56)

W ith this notation, equation (54) is identical with the GHL equation of Tang and

Toennies [33, 34] ® rst derived in a more direct way. Now it is clear that the symmetry

of the problem has been fully taken into account in this equation.

In analogy to equation (3), we de® ne the nth-order overlap integral as

sn = © U
!
r T(12) r U n ª . (57)

Using this notation, we can express equation (44) as

3
n = !

e n = e
C
– e

x
3
n = !

sn . (58)

From equations (52) and (53), it is clear that

E
s
= e

C
– e

x
, (59)

E
t
= e

C
1 e

x
. (60)

Substituting e
C

from equation (58) into these equations, and truncating the

summations in equations (41) and (42) at the M th term, we obtain the eigenenergies of

H
#

up to and including the M th order :

E
s
= 3

M

n = !

e n 1 0 3
M Õ "

n = !

sn – 1 1 e
x
, (61)

E
t
= 3

M

n = !

e n 1 0 3
M Õ "

n = !

sn 1 1 1 e
x
. (62)

For M = 1 they are identical with the Heitler± London energies of equations (14)

and (15). Therefore these energies can be regarded as a generalization of the

Heitler± London theory. The advantage of the GHL theory is that the exchange energy

calculated from the surface integral method can be used directly for the eigenenergy
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GHL theory for interatomic interaction 373

computation. To make clear the diŒerence between the exchange energy and the

exchange integral, we shall ® rst show that the various SAPTs using exchange integrals

are subsets of the solutions of the GHL equation.

3.2. Generalized Heitler± London equation and symmetry-adapted perturbation

theories

Putting equations (31) and (42) into equation (54), we obtain

(H
!
1 V ) ) 3

n = !

U n . = ( e
I
1 e

" #
T(12)) ) 3

n = !

U n . , (63)

and, forming the inner product with © U
!
r , we have

e
!
1 3

n = !

© U
!

V U n ª = e
I
1 e

" #
3
n = !

sn , (64)

where we have used equations (38) and (57).

In order to conform with the common usage and facilitate a systematic

development, we shall ® rst clarify some de ® nitions. As shown in equations (8) and

(39), the ® rst-order energy is often called the Coulomb integral, we shall follow this

convention and refer to Coulomb integrals of order n 1 1 de ® ned by

Jn + "
= © U

!
V U n ª . (65)

From equation (32), it is seen that V is associated with k ; therefore it is a ® rst-order

quantity. Since U n is associate with k
n

and is nth order, equation (65) shows that Jn + "
is indeed an (n 1 1)th-order quantity. Similarly we shall de® ne the (n 1 1)th-order

exchange integral as
K n + "

= © U
!

V U !n ª , (66)

where U !n = T(12) U n . The nth-order overlap integral of equation (57) is an nth-order

quantity. W e shall maintain this system of numbering the subscripts in the following

development. Thus J and K as commonly de® ned in equations (8) and (9) are in fact

J
"

and K
"

respectively. W ith this notation, equation (64) becomes

e
!
1 3

n = "

Jn = e
I
1 e

" #
3
n = !

sn . (67)

With the same notation as in equation (5), T(12) H = H ´, the fact that the

Hamiltonian is invariant with respect to the interchange of electrons is expressed as

H ´ = H . W ith H !
!

and V ´ similarly de® ned, it is clear that

H
!
1 V = H !

!
1 V ´. (68)

Now let us return to equation (63). Forming the inner product by multiplying this

time with the `exchanged ’ wavefunction © U !
!
r and using equations (38) and (68), we get

- U !
! ) H !

!
1 V )́ 3

n = !

U n . = e
I

3
n = !

sn 1 e
" #

. (69)

Since

- U !
!
, H !

!
3
n = !

U n . = e
!

3
n = !

sn , (70)

it follows from equation (69) and the de® nition of the exchange integrals that

e
!

3
n = !

sn 1 3
n = "

K n = e
I

3
n = !

sn 1 e
" #

. (71)
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374 K . T . Tang et al.

Adding equation (71) to equation (67), we have

e
! 0 1 1 3

n = !

sn 1 1 3
n = "

(Jn 1 K n ) = ( e
I
1 e

" #
) 0 1 1 3

n = !

sn 1 . (72)

Thus

e
I
1 e

" #
= e

!
1

3 n = "
(Jn 1 K n )

1 1 3 n = !
sn

. (73)

Similarly, subtracting equation (71) from equation (67), we get

e
I
– e

" #
= e

!
1

3 n = "
(Jn – K n )

1– 3 n = !
sn

. (74)

W ith e
I
= e

C
, e

" #
=– e

x
and equations (59) and (60), these are just the singlet and triplet

energies. If the series is truncated at Nth term, we have

E N
‰ = e

!
1

3 N
n = "

(Jn ‰K n )

1‰3 N Õ "n = !
sn

. (75)

The upper sign is associated with the singlet state and the lower sign with the triplet

state. As stated earlier, these formulae apply equally well to the H+
#

molecule ion [33].

In that case, the upper sign is associate with the gerade state and the lower sign with

the ungerade state.

For the ® rst-order energy, we simply put N = 1 in equation (75). The results are the

usual Heitler± London energies of equations (6) and (7). W ith N = 2, the second-order

energy is contained in E #‰, which includes the zeroth-, ® rst- and second-order terms :

E #‰ = e
!
1

(J
"
1 K

"
)‰(J

#
1 K

#
)

1‰(s
!
1 s

"
)

. (76)

Since the ® rst-order overlap s
"

is in the denominator, we make an expansion

[1‰(s
!
1 s

"
)] Õ " = (1‰s

!
) Õ " 0 1 y

s
"

1 ‰s
!

¼ 1 . (77)

Substituting into equation (76) and keeping quantities equal to or less than second

order, we obtain

E ‰, #
= e

!
1

J
"
‰K

"
1 ‰s

!

1
J

#
1 K

#
1 ‰s

!

y
s
"

1 ‰s
!

J
"
‰K

"
1 ‰s

!

. (78)

This result is identical with that obtained from the symmetry-adapted MS± MA

[36, 37] perturbation theory. This equation is exactly the same as equations (10) and

(11) of Chaøasinski and Jeziorski [51], which were shown to contain terms up to third

power in the zeroth-order overlap. The agreement between the two results is, in fact,

not readily apparent [33, 52] since equations (10) and (11) of [51] appear to be much

more complicated, but they can, with some eŒort, be shown to reduce to the same set

of terms in equation (78).

In the present approach, equation (78) is obtained in a simple and direct way. The

grouping of the terms follow naturally from the theory. The ® rst two terms on the right
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GHL theory for interatomic interaction 375

are clearly the zeroth- and the ® rst-order energy. The third term is a second-order

energy, coming from the second-order Coulomb and exchange integrals. The last term

is a coupling between the ® rst-order energy and ® rst-order overlap integral, making an

additional contribution to the second-order energy.

We can obtain any order of energy by expanding equation (75) in a straightforward

manner. For example, for the third-order energy we can expand

E $‰ = e
!
1

3 $n = "
(Jn ‰K n )

1 ‰3 #n = !
sn

(79)

and collect terms up to and including third-order quantities. The resulting third-order

energy is

E ‰, $
= E ‰, #

1
J

$
‰K

$
1 ‰s

!

y
3 #i= "

s i(J
$ Õ

i ‰K
$ Õ

i)

(1‰s
!
) #

1
s #
"
(J

"
‰K

"
)

(1‰s
!
) $

, (80)

where E ‰, #
is given by equation (78). Obviously this process can be continued. Cwiok

et al. [52] showed that the entire series of the symmetrized Rayleigh± Schro$ dinger

expansion [38] can be generated this way.

An alternative approach to calculating the energy is based on the expectation value

of the Hamiltonian [53]. This is the usual starting point in the variational method. For

this purpose the wavefunction, which in the perturbation theory does not have to be

normalized, must now be normalized. As mentioned earlier, the usual Heitler± London

energy is the ® rst-order energy from the perturbation calculation. It is also the ® rst-

order energy from the expectation value of the Hamiltonian. If the system does not

involve exchange, the second-order perturbation energy will also be exactly the same

as the second-order energy from the expectation value of the Hamiltonian. However,

with the exchange this is not the case.

If the wavefunction is truncated after the ® rst order, then

F = N( U
!
1 U

"
), (81)

and the normalization constant N is given by the requirement

© F, F ª = 1. (82)

Forming the inner product with the GLH equation of equation (54), ® rst with © F r and

then with © F ŕ , one can show [33], following the same procedure as before, that the

energies up to and including the second-order quantities are given by

© E ‰, #
ª = e

!
1

J
"
‰K

"
1 ‰s

!

1
J

#
1 K

#
1 ‰s

!

y
s
"

1 ‰s
!
0 2(J

"
‰K

"
)

1 ‰s
!

– J
" 1 . (83)

This expression is identical with the result of the expectation value [33]

© E‰, #
ª = © W ‰ r H r W ‰ª (84)

with

r W ‰ª = N ´( r U
!
1 U

"
ª ‰T(12) r U

!
1 U

"
ª ), (85)

where N ´ is the normalization constant. Comparing equation (83) with the second-

order perturbation energy of equation (78), we see that the zeroth an ® rst orders are

identical ; however, there is a small diŒerence in the last term of the second order.

Equation (83) is also the result found by M cQuarrie and Hirschfelder [54] with the
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376 K . T . Tang et al.

Hirschfelder± Silbey exchange perturbation theory [39]. Again the original expression

of [54] appears to be rather involved and looks quite diŒerent, but it has been shown

[33] to reduce to the identical form of equation (83).

It is interesting to note that, although the second-order perturbation result

generated from the GHL equation is identical with that of the M S ± M A theory, the

expectation value of GHL is diŒerent from the M S± M A theory. The expectation value

of the MS ± MA theory is a very poor approximation [53] because its ® rst-order

wavefunction is not symmetrized, whereas the expectation value of GHL is identical

with that of Hirschfelder± Silbey theory [39] which gives reasonable numerical results

[53].

Thus we have shown in this section that almost all SAPTs can be systematically

generated from the GHL equation with polarization wavefunctions. The resulting

experessions are often more compact than in those theories.

4. Surface integral method for exchange energy

4.1. Exchange energy of H +
#

by the surface integral method

The Hamiltonian of H+
#

written in the coordinates shown in ® gure 1 is

H = "
#
~ # –

1

r
a

–
1

r
b

1
1

R
. (86)

In this case, T(12) represents the interchange of A and B. Clearly T(12) H = H .

Therefore the eigenfunctions of this Hamiltonian must be either symmetric (gerade) or

antisymmetric (ungerade). All formulae derived so far for H
#

are equally applicable

provided that all quantities associated with the singlet (s) state is understood to be

referring to the gerade (g) state, and those with the triplet (t) state, referring to

the ungerade (u) state. Furthermore, instead of equation (4), U
!

is simply the

hydrogenic wavefunction around A

U
!
= u

A
(r

a
) =

1

p " / #
exp (– r

a
), (87)

and

T(12) U
!
= u

B
(r

b
) =

1

p " / #
exp (– r

b
). (88)

If R is very large and initially we have an isolated hydrogen atom, the wavefunction is

of course given by U
!
. As soon as the other proton is taken into consideration, U

!
is

no longer an eigenfunction because it does not have the necessary symmetry. This

means the electron is not in a stationary state and has to move. To study the time

development, we consider the linear combination

W =
1

2 " / #
( W

s
exp (– iE

s
t) 1 W

t
exp (– iE

t
t)). (89)

The density represented by this wavefunction is

q = "
#
[ r W

s
r # 1 W $s

W
t
exp (– i D t) 1 W

s
W $t

exp (i D t) 1 r W
t
r # ], (90)

where D = E
t
– E

s
= 2 e

x
. At t = 0, equation (90) becomes

q (t = 0) = "
#
r W

s
1 W

t
r # . (91)
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GHL theory for interatomic interaction 377

Figure 1. Electron and proton coordinates of the H+
#

molecular ion. M is the median plane

half-way between the two protons.

This is the density of the wavefunction

U
a
=

1

2 " / #
( W

s
1 W

t
), (92)

which, with the proper choice of phase, is localized around proton A. At t = p } D ,

equation (90) gives

q 0 t =
p

D 1 = "
#
r W

s
– W

t
r # , (93)

which is the density of a wavefunction

U
b
=

1

2 " / #
( W

s
– W

t
) (94)

localized around B. The exchange has taken place. As time goes on, the electron

oscillates between A and B with a frequency of D } h. In this process, the decrease in

density around A must be equal to the total current ¯ owing across the median plane

M between A and B (see ® gure 1). That is

–
¦
¦ t &

v

q dv = &
s

J [ ds, (95)

where

J =
i

2
( W * ¡ W – W ¡ W *). (96)

If the volume integration is over the entire left side of M, the surface integral is over

M . W ithout losing generality, W
s

and W
t
can be taken as real. Using equation (90), we

® nd that the left-hand side of equation (95) is

–
¦
¦ t &

v

q dv = D sin ( D t) &
left

W
s
W

t
dv. (97)

W ith equations (89) and (96), the right-hand side of equation (95) is given by

&
s

J [ ds = "
#

sin ( D t) &
M

( W
t
¡ W

s
– W

s
¡ W

t
) [ ds. (98)
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378 K . T . Tang et al.

Therefore equation (95) becomes

D &
left

W
s
W

t
dv =

1

2 &
M

( W
t
¡ W

s
– W

s
¡ W

t
) [ ds. (99)

This is an identity. It can of course also be derived from the time-independent

Schro$ dinger equation [55] ; however, the physics would be less transparent. W ith U
a

and U
b

given by equations (92) and (94) respectively and D = 2 e
x
, equation (99) can be

written as

e
x &

left

W
s
W

t
dv =

1

4 &
M

( U
a
¡ U

b
– U

b
¡ U

a
) [ ds. (100)

At any point on the median plane M ,

U
b
= U

a
, (101)

¡ U
b
[ ds =– ¡ U

a
[ ds ; (102)

therefore

&
M

( U
a
¡ U

b
– U

b
¡ U

a
) [ ds =– 2 &

M

U
a
¡ U

a
[ ds. (103)

Furthermore by direct substitution,

&
left

W
s
W

t
dv =

1

2 &
left

( U #
a
– U #

b
) dv. (104)

Since U
a

and U
b

are normalized and are symmetrical with respect to the median plane,

&
left

( U #
a
– U #

b
) dv = 1– 2 &

right

U #
a

dv. (105)

Therefore it follows from equation (100) that

e
x
=

– !
M

U
a
¡ U

a
[ ds

1– 2 !
right

U #
a

dv
. (106)

This expression is exact. The numerator is identical with the asymptotic exchange

energy of Herring [13].

4.2. Exchange energy of H
#

by the surface integral method

In this section we shall derive a similar formula to equation (106) for the exchange

energy of the H
#

molecule [56]. For the one-electron problem of H+
#
, it is clear that the

median plane M divides the space into two parts, and the exchange can be interpreted

as resulting from the electron ¯ owing back and forth across this plane. Now, for the

two electron H
#

problem, we must ® rst carefully examine what is meant by electron

exchange. We shall start with a one-dimensional problem, since it is conceptually

simpler. The ideas developed will be useful for the real three-dimensional problem.

Let the two protons and the two electrons all lie on a line. Electron 1 is initially

associated with proton A, and electron 2 with proton B, as shown in ® gure 2 (a). The

coordinates z
"

and z
#

are measured from the centre of the system. Proton A is located

at z
A

=– R } 2, and proton B at z
B

= R } 2. If electron 1 goes to the right of electron

2, as shown in ® gure 2 (b), we say that the exchange has occurred. Clearly exchange

takes place at z
"
= z

#
.
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GHL theory for interatomic interaction 379

Figure 2. Coordinates used to discuss the two-electron exchange in a simple one-dimensional

model. ( a ) The two electrons are with `their own ’ protons. ( b ) The exchange has taken
place.

Figure 3. Two-dimensional con® guration used to describe the one-dimensional exchange in

® gure 2. The exchange is represented by the `home-based ’ wavefunction ¯ owing from the

near side to the far side.

This one-dimensional exchange can be expressed in the two-dimensional con® gu-

ration space as shown in ® gure 3. Each point in this space represents the positions of

the two electrons. Following Herring [13], the point O is called the `original centre ’ . It

is the position where electron 1 coincide with proton A and electron 2 with proton B.

The `P centre ’ is the point obtained from the original centre by applying the

permutation to the electronic coordinates. Thus a wavefunction which is large near the

original centre and small elsewhere represents the fact that electron 1 is essentially

localized around A and electron 2 around B. Herring calls this a `home-based

function ’ . Similarly, a wavefunction which is large near the P centre represents the

electron 2 localized around A and 1 around B.

Let us call the upper left half-plane the `near side ’ and the lower right half-plane

the `far side ’ . Anywhere in the near side, the distance to the original centre is smaller

than that to the P centre ; therefore the electrons belong to their `original ’ protons. The

electron exchange is represented by the ¯ ux of the home-based function ¯ owing

through the line z
"
= z

#
from the near side to the far side.

In this con ® guration space, the distance from a representative point to the original

centre is
d

o
= [(z

"
– z

A
) # 1 (z

#
– z

B
) # ] " / # (107)

and to the P centre is
d

p
= [(z

"
– z

B
) # 1 (z

#
– z

A
) # ] " / # . (108)
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380 K . T . Tang et al.

Figure 4. Three-dimensional coordinates used to calculate the surface and volume integrals

for the two electron exchange energy.

The electrons are with their own protons if d
o
! d

p
, and the exchange has already

occurred if d
o
" d

p
, and the exchange takes place at d

o
= d

p
. W ith the help of equations

(107) and (108), this last condition can be expressed as

(z
"
– z

A
) # 1 (z

#
– z

B
) # – (z

"
– z

B
) # – (z

#
– z

A
) # = 0. (109)

After rearranging, this equation becomes

2(z
"
– z

#
) (z

A
– z

B
) = 0 ; (110)

since z
A

and z
B

are ® xed, this means that z
"
= z

#
as expected.

In three dimensions, we de® ne the electron exchange in a similar way. W e use the

same criteria to decide whether the exchange has taken place. However, all distances

must now be de® ned in terms of position vectors. If we consider (r
"
, r

#
) = (x

"
, y

"
, z

"
,

x
#
, y

#
, z

#
) as a six-dimensional con® guration space, then the point (R

A
, R

B
) is the

original centre, and (R
B
, R

A
) the P centre. Corresponding to equations (107) and (108),

the distances to the original centre and to the P centre are respectively

d
o
= ( r r

"
– R

A
r # 1 r r

#
– R

B
r # ) " / # (111)

and
d

p
= ( r r

"
– R

B
r # 1 r r

#
– R

A
r # ) " / # . (112)

Similarly equation (109), which de® nes the boundary between the near and far side of

the con ® guration space of the one-dimensional exchange, can be taken over directly.

W ritten in terms of the coordinates shown in ® gure 4, this equation becomes

r r
"
– R

A
r # 1 r r

#
– R

B
r # – r r

"
– R

B
r # – r r

#
– R

A
r # = 0. (113)

It can be shown that equation (113) is indeed a ® ve-dimensional hyperplane which

divides the six-dimensional con ® guration space into two equal and simply connected

parts. After rearranging, this equation can be written as

2(r
"
– r

#
) [ (R

B
– R

A
) = 0. (114)

Since this is a dot product, this equation simply says that the vector r
"
– r

#
is

perpendicular to R
B
– R

A
, which is the vector going from A to B. Thus this ® ve

dimensional hyperplane, which we shall designate as R , corresponds to all planes
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GHL theory for interatomic interaction 381

Figure 5. Coordinates of one of the possible planes perpendicular to the inter-nuclear axis AB.

All the planes similar to this make up the ® ve-dimensional hyperplane R dividing the six-

dimensional con ® guration space of the two electrons into the near side and far side.

perpendicular to the line AB in three dimensions. One of them is shown in ® gure 5. If

we use the line AB as the z axis, then clearly on these planes z
"
= z

#
.

We call that part of the space containing the original centre the near side, and the

part with the P centre the far side. The home-based wavefunction in this six-

dimensional con ® guration space is a function essentially localized around the original

centre. The ¯ ux of this function ¯ owing across the ® ve dimensional hyperplane R from

the near side to the far side represents the process of electron exchange.

With these understandings, we can derive the exchange energy of H
#

in almost

exactly the same way as that of H+
#
. Every equation starting from equation (89) can be

taken over directly for this case, provided that it is understood that the gradient ¡
operates on both electrons

¡ = ( ¡
"
, ¡

#
). (115)

W ritten in this six-dimensional space, equation (100) takes the form

e
x &

near

W
s
W

t
d ’ r =

1

4 & R

( U
a
¡ U

b
– U

b
¡ U

a
) [ n d & s, (116)

where the volume integral is over the entire near side and the surface integral is over

the ® ve-dimensional hyperplane R with a unit normal n directing from the near side to

the far side.

We can use the coordinates (x
"
, y

"
, z

"
, x

#
, y

#
, z

#
) to evaluate these integrals. To

describe the boundary planes, it is convenient to de® ne

u =
1

2 " / #
(z

"
1 z

#
), (117)

v =
1

2 " / #
(z

"
– z

#
). (118)
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382 K . T . Tang et al.

This transformation represents a rotation of 45Êas shown in ® gure 3. As mentioned

earlier, on the boundary planes z
"

is equal to z
#
, z

"
= z

#
. This means that on R ,

v = 0. Everywhere in the near side v ! 0, and in the far side v " 0.

With these coordinates, it is easy to show, in analogy to equations (104) and (105),

that

&
near

W
s
W

t
d ’ r =

1

2 0 1 – 2 &
far

U #
a

d ’ r 1 . (119)

However, there is a diŒerence in the surface integral which requires some explanation.

First we note that in this case

U
a
(r

#
, r

"
) = W

s
(r

#
, r

"
) 1 W

t
(r

#
, r

"
)

= W
s
(r

"
, r

#
)– W

t
(r

"
, r

#
)

= U
b
(r

"
, r

#
), (120)

which means
U

a
(x

#
, y

#
, x

"
, y

"
, u, – v) = U

b
(x

"
, y

"
, x

#
, y

#
, u, v). (121)

The surface element of R is

d & s = dx
"

dy
"

dx
#

dy
#

du,

and the gradient in the direction of n on R is given by

¡ U
a
[ n = [ ¡ U

a
(x

"
, y

"
, x

#
, y

#
, u, v) [ n]

v= !

= 9 ¦
¦ v

U
a
(x

"
, y

"
, x

#
, y

#
, u, v) :

v= !

(122)

and
¡ U

b
[ n = [ ¡ U

a
(x

#
, y

#
, x

"
, y

"
, u, – v) [ n]

v= !

= 9 ¦
¦ v

U
a
(x

#
, y

#
, x

"
, y

"
, u, – v) :

v= !

= 9 – ¦
¦ v

U
a
(x

#
, y

#
, x

"
, y

"
, u, v) :

v= !

. (123)

Therefore

&
R

U
a
¡ U

b
[ n d & s =– &

R

U
b
(x

#
, y

#
, x

"
, y

"
, u, 0) 9 ¦

¦ v
U

a
(x

#
, y

#
, x

"
, y

"
, u, v) :

v= !

d & s (124)

and

&
R

U
b
¡ U

a
[ nd & s = &

R

U
b
(x

"
, y

"
, x

#
, y

#
, u, 0) 9 ¦

¦ v
U

a
(x

"
, y

"
, x

#
, y

#
, u, v) :

v= !

d & s. (125)

The integration over x
"

y
"

and x
#
y

#
are all from – ¢ to ¢ and can be interchanged ;

hence

&
R

U
a
¡ U

b
[ n d & s =– &

R

U
b
¡ U

a
[ n d & s. (126)

Therefore it follows from equations (116) and (119) that

e
x 0 1 – 2 &

far

U #
a

d ’ r 1 =– &
R

U
b
¡ U

a
[ n d & s

or

e
x
=

– ! R (T(12) U
a
) ¡ U

a
[ n d & s

1 – 2 !
far

U #
a

d ’ r
. (127)
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GHL theory for interatomic interaction 383

Formally equation (127) is almost identical with equation (106), except that U
a

is

replaced by T(12) U
a
.

4.3. Zeroth-order exchange energy of H +
#

and H
#

To evaluate the exchange energy by the surface integral method, we need the

localized wavefunction. The simplest approximation is of course the undisturbed

zeroth-order atomic orbital. For the H+
#

ion, substituting

U
!
=

1

p " / #
exp (r

a
) (128)

as U
a

into the exchange energy expression of equation (106), both the numerator and

the denominator can be easily evaluated [57] ; the result is

e
x
=

(R } 2) exp (– R)

1 – [(R } 2) 1 1] exp (– R)
. (129)

This expression is to be compared with the Heitler± London result

e HL
x

=
(2R } 3 – 1 } R) exp (– R) 1 (1 1 1 } R) (1 1 R 1 R # } 3) exp (– 3R)

1 – (1 1 R 1 R # } 3) # exp (– 2R)
. (130)

Although both results are based on the same zeroth-order wavefunction, equation

(129) is somewhat simpler. In ® gure 6 (a), the exchange energy of equation (129) is

compared with the exact numerical results of Peek [58] ; it is seen that this zeroth-order

surface integral result closely follows the exact values over the entire range.

For the H
#

molecule, the zeroth-order home-based wavefunction is of course given

by

U
!
=

1

p
exp (– r

" A
) exp (– r

# B
). (131)

Using this as U
a

in equation (127), both the ® ve-dimensional surface integral in the

numerator and the six-dimensional volume integral in the denominator can be

integrated out analytically [56]. It can be expressed in a closed form :

e
x
=

N

D
, (132)

with

N = exp (– 2R) ( "
$ !

R & 1 "
$ !

R $ – R # – &
#
)

1 Ei (– R) exp (– R) ( "
$ !

R ’ 1 "
$ !

R & – )
$ !

R % – " ’
" !

R $ – 4R # – 4R)

1 Ei (– 2R) (– %
" !

R $ 1 4R) (133)

and

D = 1 – exp (– 2R) ( "
’
R $ 1 $

%
R # 1 " "

)
R 1 1), (134)

where Ei (x) is the exponential integral function

Ei (x) =– &
¢

Õ x

exp (– t)

t
dt. (135)

The exchange energies calculated from the analytical expressions in equations
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384 K . T . Tang et al.

Figure 6. (a) Exchange energy of the H+
#

molecular ion : ( Ð Ð ), results obtained from the

surface integral method including the denominator with the zeroth-order wavefunction;

( [ [ [ [ [ [ ), calculated from the asymptotic exchange energy expression ; ( D ), exact results
of Peek [58]. (b) Exchange energy of the H

#
molecule : ( Ð Ð ), results obtained from the

surface integral method including the denominator with the zeroth-order wavefunction:

( [ [ [ [ [ [ ), results of the asymptotic exchange energy expression ; ( D ), accurate variational
results of Koøos and Wolniewicz [59].

(132)± (134) are shown in ® gure 6 (b) as the solid curve. In the same ® gure, the `exact ’

exchange energies from Koøos and W olniewicz [59] are shown as open circles for

comparison. It is seen that the exchange energy of equation (132) closely follows the

exact numerically calculated values in the entire range from 1 to 12 au where they are

available.

It is interesting to compare equation (132) with the Heitler± London result which

can also be expressed in a closed form [60]. It turns out that, although the expressions

are diŒerent, they give comparable results from 1 to 12 au [56]. However, there is an

important diŒerence. Asymptotically the Heitler± London result goes to [61]

e HL
x

(R ! ¢ ) = ( # )
% &

– #
" &

c – #
" &

ln R) R $ exp (– 2R), (136)

where c is the Euler constant equal to 0.5772. As has been noted several times in the

past [16, 62], for R larger than 60a
!
, equation (136) becomes negative which is

physically unacceptable.

On the other hand, it can be shown that asymptotically the exchange energy of

equation (132) is given by [56]

e
x
(R ! ¢ ) = %

" &
R $ exp (– 2R), (137)

which stays positive no matter how large R is. Therefore it does not have the

conceptual di� culty of the conventional Heitler± London method.
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GHL theory for interatomic interaction 385

4.4. Exact asymptotic exchange energy of H+
#

and H
#

As seen in the last section, even the zeroth-order exchange energies closely follow

the exact values over the entire range, demonstrating the viability of the surface

integral method, but their numerical values are, however, far from `chemical

accuracy ’ . Based on the surface integral method, one can derive asymptotic

expressions which are exact for R going to in® nity. The range of validity of these

expressions usually includes the well region of the van der W aals potential. W ithin this

range, they are amazingly accurate. Asymptotically, the denominator of both equation

(106) and equation (127) can obviously be replaced by unity, and we only need to

compute the numerator.

To include the eŒect of polarization, the localized wavefunction for H+
#

can be

expressed as

U
a
= U

!
g(r

a
, h ), (138)

where the function g represents the eŒect of proton B and can be calculated either by

the perturbation method [55] or by the Wentzel ± Kramers± Brillouin (WKB) ap-

proximation [23]. The coordinates r
a

and h are de® ned in ® gure 1. The leading term of

the exchange energy from the surface integral method with this localized wavefunction

is [55]

e
x
= "

#
R exp (– R) g # 0 ra

=
R

2
, h = 0 1 . (139)

To ® nd g, Herring [13] made two approximations which amounts to ® rstly restricting

the equation governing g to the internuclear axis and secondly neglecting the second

derivatives of g. These simpli® cations can be shown to be justi® ed in a calculation of

only the asymptotic leading term. Herring found that at h = 0,

g =
1

1 – r
a
} R

exp 0 – r
a

R 1 . (140)

Substituting into equation (139), one gets

e
x
(H+

#
, R ! ¢ ) =

2

e
R exp (– R). (141)

Herring proved with Kato’ s [63] theorem that this result is asymptotically exact. For

H+
#
, the Schro$ dinger equation is separable and the asymptotic series of the exchange

energy is known [64]. The leading term is indeed given by equation (141). The results

of this equation are also shown in ® gure 6 (a) as the dotted curve. It is seen that,

although this simple expression is exact only asymptotically, it is still amazingly

accurate for R as small as 2 au. At the van der Waals minimum (12 au), it is only 1.7 %

diŒerent from the exact value. This is to be compared with the rather complicated

second-order SAPT [51] which is in error by 3 % at the same distance.

For the H
#

moelcule, Herring and Flicker [16] and Herring [17] used a similar

argument and obtained the following expression for the exchange eneregy :

e
x
(H

#
, R ! ¢ ) = 0.818R & / # exp (– 2R). (142)

Although a number of approximations were used to obtain the important eŒect of

electron± electron correlation, Herring [17] was able to show that this expression is
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386 K . T . Tang et al.

asymptotically exact. The results of this equation are also shown in ® gure 6 (b) as the

dotted curve. Compared with the numerically calculated `exact ’ results, this equation

is clearly valid in the region of van der W aals minimum (8 au).

It is interesting to note that, when Herring undertook this study, the purpose was

to correct the conceptual defect of the Heitler± London method. Even Herring [13]

himself thought that this approach is only `good for the soul ’ . Later it turned out that

equation (142) is in excellent agreement with the most elaborated ab initio calculations

[59] in the van der W aals region and beyond. This caused some discomfort. For

example in their review, Hirschfelder and M eath [6, p. 65] stated, `Since the unknown

correction term O(R # exp Õ # R) might be comparable in magnitude to the ® rst term, the

accuracy of the asymptotic values of the exchange energy is not known. The very

excellent agreement with the Koøos and W olniewicz calculations might be fortuitous.’

This objection is now removed. Andreev [65] showed that the second term is identically

equal to zero. In a recent perturbation calculation [66], the exchange energy was shown

to consist of contributions from the zeroth-order wavefunction, ionic distortion and

electron± electron correlation. Although they are non-additive, together they give a

result identical with equation (142) and the coe� cient of the next term R # exp (– 2R)

is equal to zero. This could be the reason why the leading term alone is such a good

approximation, since the best possible result of an asymptotic series is to truncate it at

the smallest term.

Another reason why scant attention has been paid to this method in the western

literature may be that the surface integral method is based on the physical process of

electrons hopping between nuclei. W hile this phenomenon is in agreement with

general principles of physics as beautifully expounded by Feynman [67] and others (for

example [68]) and is readily accepted in the case of molecular ions, where the

implications from charge-transfer scattering experiments are obvious, it apparently

contradicts textbook wisdom. For example, Coulson [69] on p. 113 of the second

edition of his famous book Valence writes, `People sometimes say the electrons

exchange, or trade places with one another. Such language is full of danger.’ Further

on the same page, Coulson goes on to state, in connection with the frequency

associated with the exchange energy, `But it is quite incorrect to think of this as an

actual frequency of exchange.’ Similar statements explicitly warning against this

interpretation can be found in many other quantum chemistry textbooks. Of course,

one reason for the confusion is that in the conventional approximations the exchange

enters in via the exchange integrals, which are not only di� cult to give a clear

interpretation to, but also give a physically unacceptable asymptotic result [17].

4.5. Exchange energy of multielectron dimer ions

The surface integral method for the exchange energy of H+
#

was extended to

multielectron dimer ions by Bardsley et al. [23]. It is assumed that the asymptotic

exchange energy is due to the outermost electron hopping between the two ionic cores.

The localized wavefunction of the outermost valence electron U
a

is written in the same

form as equation (138). Now the zeroth-order wavefunction U
!

is the asymptotic

wavefunction of the singled-out electron, governed by the equation

[– "
#
~ # 1 V(r) 1 E

I
] U

!
= 0, (143)

where V(r) is the eŒective potential between the outermost electron and the rest of the

particles, and E
I

is the atomic ionization energy. In the asymptotic region, the
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GHL theory for interatomic interaction 387

interaction is usually approximated by the Coulomb potential, that is V(r) =– 1 } r.

W ith this potential, the solution can be expressed in terms of the W hittaker function.

The radial part is given by [70]

U
!
=

1

(4 p ) " / #
Ar " / b Õ " exp (– b r) 0 1 1 3

¢

t= "

a
t

rt 1 , (144)

with

a
"
=

1

2 b 9 l(l 1 1)–
1

b 0 1

b
– 1 1 : (145)

and

a
t
= a

t Õ "

1

2 b t 9 l(l 1 1)– 0 1

b
– t 1 0 1b – t 1 1 1 : , (146)

where A is the amplitude, l is the orbital angular momentum of the valence electron

and

b = (2E
I
) " / # . (147)

For the localized wavefunction U
a

of equation (138), we must ® nd g which represents

the eŒect of the other ion core. Bardsley et al. expressed g in terms of an exponential

function g = exp (– S
"
– S

#
– I ) and used the W KB method to ® nd S

"
and S

#
which

are successively higher orders of 1 } R . Substituting this U
a

into the surface integral,

they found the exchange energy to be

e
x
= "

#
p R 0 4

e 1 " / b

U #
! 0 R2 1 0 1 1

C
"

R
1

C
#

R #
1 I 1 , (148)

where C
"

and C
#

are constants depending on b .

If only the leading term in the wavefunction expansion of equation (144) and in the

energy expansion of equation (148) are kept, then this last equation is simpli ® ed to [71]

e
x, "

= "
#
A # R # / b Õ " exp 0 – b R –

1

b 1 . (149)

In the case of H+
#
, for which b = 1 and A = 2, this equation reduces to equation (141),

which Herring [13] showed is asymptotically exact. For a general case, his proof should

still be valid, provided that the amplitude of the wavefunction A is known exactly.

The exact determination of the amplitude of the asymptotic wavefunction A is in

general a di� cult problem. A cannot be determined by the normalization condition

( U
!
, U

!
) = 1, since the asymptotic wavefunction is not valid at small distances, where

the eŒect of the other electrons cannot be neglected. Thus the most commonly used

method to estimate A is to perform a self-consistent ® eld (SCF) calculation for the

atomic wavefunction in the inner region and then match it with the asymptotic form

at some large distance [71]. While this is a reasonable procedure, it is not without

uncertainties. If the matching point is too large, the SCF results are not accurate and,

if the matching point is too small, the asymptotic form is no longer valid.

For l = 0 electrons a particular simple approximation is to set [70]

A =
(2 b ) " / b ( b ) " / #

C (1 } b 1 1)
. (150)

This is commonly known as Bates± Damgaard normalization. It is based on the fact
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388 K . T . Tang et al.

that, if 1 } b is equal to an integer n, the in ® nite series of equation (144) is broken and

becomes a polynomial. In that case, the wavefunction has the same form as a hydrogen

orbital. The normalization constants for these orbitals are known analytically :

A =
(2 } n)

n
(1 } n) " / #

C (n 1 1)
. (151)

W hen 1 } b is not an integer, the normalization constant is simply interpolated to the

form of equation (150). If this normalization is used, then the entire asymptotic

exchange energy is determined by the ionization energy alone.

The higher correction terms in the energy expression of equation (148) are known

only for H+
#

with b = 1 [64]. For arbitrary b , only the ® rst correction term is known

[23] :

C
"
=

1

b # 0 3

2 b
– 1 1 . (152)

Since the series in equation (148) is an asymptotic series, it is not easy to establish the

optimum number of terms to be included. Fortunately often the leading term alone is

a very good approximation.

In ® gure 7, the exchange energies for He+
#
, Li+

#
and Be+

#
according to the surface

integral method with the normalization of equation (150) are plotted against the

internuclear distances [72]. In addition to the leading term e
x, "

of equation (149), the

results including additional terms in the wavefunction expansion and in the energy

expansion are also shown. e
x, #

denotes the exchange energy calculated with one

additional term in the asymptotic wavefunction of equation (144) :

e
x, #

= "
#
A # R # / b Õ " exp 0 – b R –

1

b 1 0 1 1
2 p

R 1 #
, (153)

where

p =–
1

2 b # 0 1b – 1 1 . (154)

e
x, $

designates the exchange energy for two terms in the wavefunction and two terms

in the energy expression (equation (148)) :

e
x, $

= "
#
A # R # / b Õ " exp 0 – b R –

1

b 1 0 1 1
2 p

R 1 # 0 1 1
C

"
R 1 , (155)

with C
"

given by equation (152). It is seen that the diŒerence between them is very

small.

The general criterion for the validity of the asymptotic energy is [21, 72]

R &
4

b #
. (156)

Therefore we expect the H+
#
, Li+

#
and Be+

#
results to be valid for R larger than 2a

!
, 10a

!
and 6a

!
respectively.

In ® gure 7 some `accurate ’ ab initio results are also shown as open squares. They

are obtained from the diŒerence between the energies of ungerade and gerade states.

For He+
#
, they are from the con® guration interaction (CI) calculation of Ackermann

and Hogreve [73]. These results become unreliable for R & 10a
!
. For Li+

#
, they are from

the SCF± CI calculation of Schmidt-Mink et al. [74], and for Be+
#

from the
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GHL theory for interatomic interaction 389

Figure 7. Asymptotic exchange energies of He+
#
, Li+

#
and Be+

#
. In each case e

x, "
, e

x, #
and e

x, $
are

shown, they are the one- two- and three-term exchange energy expressions obtained from
the surface integral method. The open squares are the `best ’ ab initio results. For He+

#
they

are from the CI calculation of Ackermann and Hogreve [74], for Li+
#

from the SCF± CI

calculation of Schmidt-Mink et al. [74] ; and for Be+
#

from the multireference CI
calculation of Fischer et al. [75]. (Taken from [72] with permission granted by the

American Institute of Physics.)

multireference CI calculation of Fischer et al. [75]. It is seen that these ab inito results

are indeed in very good agreement with the surface integral expressions in the region

where they are valid. In fact the simple analytic expressions obtained from the surface

integral method with all parameters determined only by the ionization energy are even

more accurate than the restricted and unrestricted Hartree± Fock and SCF molecular

orbital calculations [72, 76].

It is interesting to note that the diŒerence between the b of Li and He is a factor of

only two ; yet the exchange energy of Li+
#

diŒers from that of He+
#

by seven orders of

magnitude at R = 20a
!
. The fact that such a simple expression without any adjustable

parameters can describe this enormous diŒerence certainly demonstrates the versatility

and accuracy of the surface integral method.

4.6. Exchange energy of multielectron diatomic molecules

The Gor’ kov± Pitaevski and Herring± Flicker method of calculating the asymptotic

exchange energy of the H
#

molecule was extented to treat a pair of alkali atoms by

Smirnov and Chibisov [18]. In this method, the wavefunction of the valence electron

is approximated by the ® rst term of the asymptotic expression in equation (144). In the

case of a homonuclear diatomic molecule, the exchange energy is found to be [18]

e
x
= "

#
D(A , b ) R ( / #

b Õ " exp (– 2 b R), (157)

where

D(A , b ) = A % C 0 1

2 b 1 2 Õ " Õ " / b b Õ # Õ " / #
b & "

!

exp 0 y – 1

b 1 (1– y) $ / #
b (1 1 y) " / #

b dy. (158)
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390 K . T . Tang et al.

For b = 1 and A = 2, this equation reduces to the H
#

exchange energy of equation

(142). W e have found that the b -dependent expression D } A % can be ® tted to the form

[77]

D

A %
= 0.0129 1 0.1297 b – 0.0403 b # (159)

with a maximum deviation of only 0.25 %. This ® t is valid for b varying from 0.5 to 1.4

and equivalent for the ionization energy range from 0.125 to 0.98, which includes all

known atoms.

For the heteronuclear interaction, the amplitudes of the wavefunction and the

ionization energies for the two atoms will be diŒerent. Corresponding to A and b for

the ® rst atom, let us de® ne B and a for the second atom. If a and b are not too diŒerent,

Smirnov and Chibisov [18] showed that the exchange energy calculated by the surface

integral method is given by

e
x
= "

#
R # / a + # / b Õ " /( a + b )Õ " exp [ – ( a 1 b ) R ] F( a , b , R), (160)

where

F( a , b , R) = A # B # 2 Õ # Õ # /( a + b ) C 0 1

a 1 b 1 0 2

a 1 b 1 # + " /( a + b )
[H ( a , b , R) 1 H ( b , a , R)] (161)

and

H ( a , b , R) = 0 a 1 b

2 b 1 # / a Õ # ( a + b )

& "

!

exp 0 y– 1

b
1 R( b – a ) y 1 (1– y) # / b Õ " /( a + b )

3 (1 1 y) # / a Õ # / b + " /( a + b ) 0 1 1
b – a

b 1 a
y 1 Õ # Õ " /( a + b )

dy. (162)

The internuclear distance over which this approximation should be valid is [21]

R &
2

a #
1

2

b #
. (163)

The theory was further extended by Duman and Smirnov [20] to treat general

atomic systems. It is based on the fundamental approximation that the exchange

interaction between two multielectron atoms is dominated by the exchange of a single

pair of electrons at any one time. However, in order to antisymmetrize the total

wavefunction, the coupling of orbital and spin angular momenta of all equivalent

electrons has to be taken into account. As a result, the exchange energy of a

multielectron system is found to be equal to the exchange energy of a single pair

multiplied by a rather complicated angular momentum coupling constant K , that is

e
x
= K e

x, s
, (164)

where e
x, s

is given by equation (157) or (160) and is the exchange energy of a single

pair of electrons in the two atoms. To derive the K factor, it is necessary to express the

atomic wavefunction in a form in which one valence electron is singled out. This can

be done by the genealogical scheme of Racah [78] (see also [79]), in which the atomic

wavefunction is written in terms of a single valence electron and of the atomic residue.

The total wavefunction of an atom with orbital angular momentum L, spin S and
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GHL theory for interatomic interaction 391

projections M
L

and M
S

can be expressed as a sum of the products of the wavefunction

of the singled-out electron with orbital angular momentum l
"
, projection l and the

wavefunction of the atomic residue with orbital angular momentum l and spin s.

Since there are several diŒerent existing con® gurations that can be combined with the

singled-out valence wavefunction to create the ® nal con ® guration, each con® guration

has to be wighted by the fractional parentage coe� cient GLS
ls

. These coe� cients are

available in tabulated forms [79]. From these atomic wavefunctions, one has to build

the molecular wavefunction by combining the two spins S and S ´ of atom A and atom

B to give the total spin J of the molecule. In the asymptotic region, the calculation can

be simpli ® ed by assuming that only states with l = 0 will contribute. This is because

the main contribution to the exchange energy is from the area close to the internuclear

axis [13, 18], where those states with l 1 0 have very little density.

The K factor was ® rst calculated by Duman and Smirnov [20] with these

approximations. Unfortunately their ® nal results were incorrect. The correct result is

given by [80]

K = NN ´(2S 1 1) (2S ´ 1 1) (2l
"
1 1) (2l !

"
1 1) 3

sl

3
s´l´

(GLS
ls

) #

3 (GL´S ´
l ´s´ ) #

1

2
3

4

"
#

s

S

s´
"
#

S ´
S ´
S

J

5

6
7

8

9 l

M
L

l
"
0

L

M
L
: # 9 l ´

M !L

l !
"
0

L´
M !L

: # (165)

where N and N ´ are the numbers of valence electrons of atom A and atom B

respectively. Similarly, all primed quantities are those of atom B. Here {I } is the 9-j

symbol and [ I ] is the Clebsch± Gordan coe� cient.

The numerical values of the coupling constant K for many diatomic systems have

been calculated with equation (165) [80]. Although these K factors are the result of a

rather complicated angular momentum coupling, all of them are identical to the

results of a simple counting procedure. That is, the factor K is equal to the number of

possible exchanges between valence electrons with the same spin in the two atoms. For

example, the K values for H ± He, He
#
, He ± Ne and Ar

#
interactions are respectively 1,

2, 6 and 18. Some interaction potentials calculated with these K factors will be

discussed in section 5.3. The fact that they diŒer so greatly from each other and yet in

each case an accurate potential is produced is a clear indication that these K factors are

correctly predicted. In any case, this counting procedure is consistent with the surface

integral method, which associates the exchange energy with only two electrons trading

place at any one time.

5. Interaction energy of diatomic systems

5.1. Exchange energy and polarization approximation

For some time the surface integral method for the exchange energy was considered

to be `very diŒerent in nature from the Rayleigh± Schro$ dinger perturbation theory

involving special analytical techniques which do not appear capable of systematic

improvement ’ [81]. The conventional wisdom was that the exchange terms are

`determined by the region in con® guration space where electrons are far away from

their parent nuclei ; the electronic motion in this region is strongly aŒected by the non-

parent ionic core, which makes a perturbative calculation of these terms unjusti® able’

[22]. It now appears that this understanding is not correct as can be seen from the

following speci® c results.
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392 K . T . Tang et al.

For H+
#
, it can be explicitly shown that the exchange energy receives contributions

from all orders of the perturbed wavefunctions, although the dominant contributions

are from the ® rst few orders. Replacing the perturbing potential by its multipole

expansion [82± 84], the exchange energy can be evaluated order by order [55]. Explicitly

it can be expressed as

e
x
= "

#
R exp (– R) 0 1 1 a 1

1

2
a # 1

1

3 !
a $ 1 I 1

1

t !
at 1 I 1 #

, (166)

where

a = 3
¢

n = "

1

n 1 1 0 12 1
n + "

. (167)

The ® rst term in equation (166) is from the zeroth-order wavefunction, the second

term from the ® rst-order wavefunction, and so on. Equation (166) can be written as

e
x
= "

#
R exp (– R) (exp a) # (168)

and, since

3
¢

n = "

1

n 1 1 0 12 1
n + "

= ln 2 – "
#
, (169)

hence

e
x
= "

#
R exp (– R) [exp (ln 2 – "

#
)] #

=
2

e
R exp (– R), (170)

which is the exact asymptotic exchange energy of equation (141). The coe� cient of R

exp (– R) is an irrational number. It is interesting to see that the perturbation series

actually converges to this irrational number exactly. Although it takes in ® nite orders

to arrive at this irrational number, in practice the rate of convergence is rather fast.

The zeroth-order wavefunction gives 67.95 % of the exact value. Together with the

® rst-order wavefunction (two terms in equation (166)), it is already 96.74 %. With

second order, 99.79 %. With the ® rst four orders of the wavefunctions, essentially

100 % of the exchange energy is recovered.

These explicit analytical results conclusively demonstrate that the exchange energy

can be calculated perturbatively and that the exact asymptotic exchange energy

contains the polarization eŒects.

5.2. Generalized Heitler± London theory and potential of the chemical bond

For H+
#
, with U

!
given by the 1s orbital, e

"
and s

!
are well known [31] :

e
"
= 0 1 1

1

R 1 exp (– 2R), (171)

s
!
= 0 1 1 R 1

R #

3 1 exp (– R). (172)

The exchange energy e
x

calculated by the surface integral method is given by equation

(129). Substituting them into equation (61) with M = 1, we obtain the R
g

H+
#

ground-

state potential (E
s
– e

!
) shown as the dashed curve in ® gure 8.

For this system, Dalgarno and Lynn [85] obtained the exact ® rst-order wave-

function U
"

by solving equation (36) in confocal elliptical coordinates. W ith this exact
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GHL theory for interatomic interaction 393

Figure 8. Ground-state potential energy of the H+
#

molecular ion calculated by the GHL

theory with polarization wavefunctions: ( ± ± ± ), calculated with the zeroth-order
wavefunction; ( Ð Ð ), calculated with the exact zeroth- and ® rst-order polarization

wavefunctions; ( D ), exact results from Peek [58] ; ( [ [ [ [ [ [ ), for comparison, the usual

Heitler ± London (linear combination of atomic orbitals) energy with the zeroth-order
symmetrized wavefunction. (Taken from [57] with permission granted by the American

Institute of Physics).

® rst-order wavefunction, Chipman and Hirschfelder [53] evaluated analytically the

® rst-order overlap s
"

and the second-order polarization energy e
#
. Approximating the

localized wavefunction U
a
= U

!
1 U

"
, the exchange energy of equation (106) was

evaluated in closed forms by Guo et al. [86]. Therefore the potential from equation (61)

with M = 2 can also be expressed in terms of analytic functions [57]. This potential is

shown in ® gure 8 as the solid curve. In the same ® gure, the exact results from Peek [58]

are also shown as open circles. The amazing agreement shown in the ® gure clearly

demonstrates that through the GHL theory the chemical potential can be calculated

perturbatively and the results are drastically improved by going from zeroth-order to

® rst-order wavefunctions.

The GHL theory has also been implemented for the calculation of the ground state

(X " R +
g
) potential of the H

#
molecule [87]. Since closed expressions are not available, up

to 240 variational terms are used for various orders of perturbed wavefunctions.

Polarization energies e n and overlap integrals s up to n = 60 have been numerically

evaluated. Rapid convergence of the GHL equation (equation (61)) is achieved for all

distances if an accurate exchange energy is used. This result is quite important since,

although previous attempts to use perturbation theory to calculate the potential of the

chemical bond have not been successful, it has long been known that the exchange

energy can be calculated accurately. For example, already in 1968 Certain et al. [88]

reported on the basis of an examination of various perturbation methods that equally
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394 K . T . Tang et al.

good results for the exchange energy could be obtained from diŒerent methods.

Recently we have demonstrated [89] that, by using the well known Coulson-Fischer

[90] orbital, the error in the exchange energy obtained from the surface integral

method is reduced from 20 % in the zeroth-order wavefunction calculation to only 4 %

in the region of chemical bonds. Thus, in view of these results, the less accurate

interaction energies obtained by Certain et al. [88] can be greatly improved by the use

of equation (61).

While other chemical bond potentials have been determined by the GHL theory

[91], it is for the calculation of van der W aals potentials that the GHL theory (equation

(62)) is especially useful.

5.3. Generalized Heitler± London theory and van der W aals potential

Standard computational methods of electronic structure theory are not well suited

to the determination of the weak van der W aals potentials [92]. Essentially the

di� culties arise from the errors inherent in the subtraction of the enormous energies

of the separated atoms from that of the combined supermolecule which are only

slightly diŒerent. Therefore many attempts have been made throughout the years to

construct a composite semiempirical potential by adding the repulsive and attractive

parts [93± 104]. It is well known that the long-range attractive potential can be

described by the dispersion series obtained from the second-order perturbation theory

[7]. As we have discussed, the repulsion is mainly due to the exchange eŒect. Later it

became clear that a large part of this repulsion can be obtained from a molecular SCF

calculation [93]. Thus the SCF results are used for the repulsive parts in many of these

potential models. The problem of divergence of the dispersion series at small R is

solved in the Tang± Toennies [9] potential model by a simple damping function which

gradually turns oŒeach individual term. These damping functions were derived from

a classical Drude model and depend only on the range parameter of the repulsive

potential. Thus they can be applied to all systems. For systems for which accurate ab

initio damping functions are available [105, 106], they are found to be very accurate.

However, for this model to give correct absolute values of the potentials for both

atom± atom [9] and atom± molecule [107, 108] interactions, it was found necessary to

increase the SCF results by 14± 17 %. It can be argued that this increase is required to

account for the exchange± dispersion. In principle this term can be recovered from the

SAPTs, but in practice it is extremely di� cult to calculate directly [109± 111].

While useful for understanding a variety of experimental data, this simple potential

model has two problems : ® rstly the ad hoc nature of adding together the repulsive and

attractive parts from diŒerent sources, and secondly the necessity of estimating the

exchange± dispersion energy.

With the GHL theory, these problems are solved. The van der W aals potential is

given by equation (62) which is derived from a single consistent theory. The exchange

energy calculated by the surface integral method automatically contains the dispersion

(polarization) eŒects, as we have seen in section 5.1. In this theory, the polarization

energy and the exchange energy are combined in a computationally and conceptually

simple way. If the region of validity for the asymptotic energy covers the well region

of the vander W aals potential, often an accurate analytic potential can be obtained.

The $ R
u

state potential of the H
#

molecule is an important prototype of the van der

W aals potentials [99]. The potential energy, de ® ned as V = E
t
– e

!
, is given by equation

(62). W ith M = 2,

V = e
"
1 e

#
1 (1 1 s

!
1 s

"
) e

x
. (173)
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GHL theory for interatomic interaction 395

The ® rst-order energy e
"

and zeroth-order overlap are well known [31] :

e
"
= 0 1

R
1 &

)
– $

%
R – "

’
R # 1 exp (– 2R), (174)

s
!
= (1 1 R 1 "

$
R # ) # exp (– 2R). (175)

The ® rst-order overlap s
"

is negligibly small in the van der W aals region [87]. The

accurate second order polarization energy e
#

is also available [8] and can be expressed

in terms of the dispersion series

e
#
=– 3

n = $

f
#

n (R) C
#

n R Õ #
n
, (176)

where the C
#

n are the dispersion coe� cients and the f
#

n are the damping functions. For

the hydrogen molecule, the dispersion coe� cients are known exactly. Using the

Tang± Toennies [9, 112] damping functions

f
#

n = 1 – exp (– bR) 3
#

n

k= !

(bR)k

k !
, (177)

with

b =–
d

dR
ln [ e

x
(R)] (178)

and the exchange energy e
x

of equation (142), the potential of equation (173) can be

evaluated analytically. The results are shown in ® gure 9. For comparison, the

numerically calculated `exact ’ results of Koøos and W olniewicz [59] are also shown in

the same ® gure as open circles. For R & 3 au, they are hardly distinguishable. At the

well minimum (8 au) they diŒer from each other by only 0.5 % [113].

Recently equation (173) was used to calculate the potentials of He
#
, Ne

#
and Ar

#
[114]. The exchange energy was calculated from equation (164) with e

x, s
given by

equation (157) and K given by the counting rule. The amplitude A of the wavefunction

was determined from a comparison with the atomic density obtained from a

con® guration interaction calculation. The ® rst-order energy, which is the Coulomb

integral, was evaluated with the asymptotic wavefunction. The overlaps were also

numerically evaluated and found to be negligibly small in the well region. The second-

order energy was calculated using equation (176). For these systems, the ® rst three

dispersion coe� cients are accurately known [115] and the higher coe� cients are

estimated through the recurrence relation [116, 117]

C
#

n = 0 C #
n
Õ #

C
#

n
Õ %
1 $

C
#

n
Õ ’

. (179)

Again the Tang± Toennies damping functions of equation (178) were used. Recently

W heatley and Meath [118] did an elaborate calculation for the damping function of

the He
#

potential. Their results are found to be in very good agreement with equation

(177) in the well region [114].

The potentials of He
#

and Ar
#

obtained from equation (173) are shown in ® gures

10 (a) and 10 (b) respectively [114]. For He
#
, the results of the quantum M onte Carlo

calculation of Anderson et al. [119] and the multireference CI calculation of van

M ourik and van Lenthe [120] are also shown for comparison. For this system the input

parameters to the GHL theory are accurately known ; the results are almost of
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396 K . T . Tang et al.

Figure 9. The van der Waals potential V(R) of the H
#
( $ R

u
) system : (Ð Ð ), results of the GHL

theory with the asymptotic exchange energy ; ( D ), numerical ab initio `exact ’ results of
Koøos and Wolniewicz [59]. (Taken from [113] with permission granted by Springer±

Verlag.)

spectroscopic precision. For Ar
#
, the results of the fourth-order M ù ller± Plesset

calculation of Tao and Pan [121] as well as the empirical ® t of Aziz and Slaman [122]

are also shown. W hile the GHL results are comparable with the `best ’ ab initio

calculations now available, an error of up to 10 % cannot be ruled out. Most of this

error comes from the uncertainty in the asymptotic amplitude A of the atomic

wavefunction. Although how to precisely determine the value A is an interesting

problem for further investigation, the advantage of the surface integral method is

clear. It has transformed the two-centre molecular problem to a one-centre atomic

problem which should be much simpler to handle. It is interesting to note that

according to the counting rule, K is equal to 2 for He
#

and to 18 for Ar
#
. In the original

paper of Duman and Smirnov [20], it is equal to 9 for both cases. If the value of 9 is

used, the potentials produced are nowhere near those shown in ® gure 10.

In these calculations it is found that the ® rst-order energy contributes less than

10 % to the well minimum and, to a good approximation, is proportional to the

exchange energy. It also happens that the value of A determined from an accurate CI

atomic wavefunction is larger than that obtained from the SCF wavefunction by about

2± 3 %. Since the exchange energy depends on the fourth power of A , this just about

cancels the ® rst-order energy. Therefore, for simplicity, one can use the A value

determined by the atomic SCF calculation and neglect the ® rst-order energy. For a
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GHL theory for interatomic interaction 397

Figure 10. (a) The He
#

potential curve : (Ð Ð ), results of the GHL theory with the asymptotic

exchange energy ; ( * ), the quantum Monte Carlo calculations of Anderson et al. [119] ;

( 3 ), the multireference CI calculation of van Mourik and van Lenthe [120]. (b) The Ar
#

potential curve : ( Ð Ð ), results of the GHL theory with the asymptotic exchange energy ;

( V ), fourth-order M ù ller± Plesset calculation of Tao and Pan [121] ; ( ± ± ± ), empirical

multiproperty ® t of Aziz and Slaman [122]. (Taken from [114] with permission granted
by the American Institute of Physics.)

homonuclear dimer, the entire van der W aals potential is thus given by the closed

analytical expression

V = "
#
KDR ( / #

b Õ " exp (– 2 b R)– 3
n = $

0 1– exp (– bR) 3
#

n

k= !

(bR)k

k ! 1 C
#

n

R #
n (180)

with

b = 2 b –
3.5 b – 1

R
. (181)

Results based on this model diŒers very little from what is shown in ® gure 10

[114, 123].

For heteronuclear systems, the exchange energy of a single pair of electrons should

be calculated with equation (160). W e have used this equation to calculate the van der

W aals potentials of H ± He, He± Ne, Li± He, Na± He, K ± He, Rb ± He and Cs± He [77]. In

every case, the agreement with the best ab initio data or semiempirical potentials is very

good. Equation (160) is strictly valid for a E b . However, even for interactions, such

as Li± He ( a = 0.629 ; b = 1.344), where the diŒerence between them is a factor of two,

the formula apparently still works. The true range of validity of these formulae is

another interesting problem for further investigation.
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398 K . T . Tang et al.

6. Interaction energy of the H 3 system

6.1. Complete H
$

potential energy surfaces according to the generalized

Heitler± London theory

In the case of H
$
, the symmetry group is S

$
which has six elements. This group has

three irreducible representations which we shall designate as A , B and E . Both A and

B are one dimensional, and E is two dimensional. The matrix representing each of the

elements have the following explicit forms [45] :

DA(g) = 1 for all g in S
$
, (182)

DB(g) = 1 for g = I, (123), (132), (183)

DB(g) =– 1 for g = (12), (23), (13). (184)

DE(I ) = 0 1

0

0

1 1 , (185)

DE(12) =
1

2 0
– 1

3 " / #

3 " / #

1 1 , (186)

DE(23) =
1

2 0
– 1

– 3 " / #

– 3 " / #

1 1 , (187)

DE(13) = 0 1

0

0

– 1 1 , (188)

DE(123) =
1

2 0 – 1

– 3 " / #

3 " / #

– 1 1 , (189)

DE(132) =
1

2 0 – 1

3 " / #

– 3 " / #

– 1 1 . (190)

With n
A

= n
B

= 1 and n
E

= 2, and the order of the group N equal to 6, the

projection operators can be directly calculated by putting these explicit representations

into equation (20). In particular,

PA
" "

= "
’
[I 1 (12) 1 (23) 1 (13) 1 (123) 1 (132)], (191)

PB
" "

= "
’
[I – (12)– (23)– (13) 1 (123) 1 (132)]. (192)

Since both representations A and B are one dimensional, the eigenfunctions

belonging to thse representations are basis functions. These eigenfunctions can be

projected out from a single localized wavefunction shown in equation (21). Then it is

clear from equation (191) that the eigenfunction uA of representation A is totally

symmetric with respect to its spatial coordinates. To satisfy the Pauli principle, the

spin function is required to be antisymmetric, which is not possible with three

electrons. Therefore this is an unphysical state. We designate the eigenvalue of this

`mathematical ’ state E ´ :
E ´ = H A

" "
. (193)

Similarly, since PB
" "

of equation (192) is antisymmetric in the exchange of two electrons,

the eigenfunction uB must be also antisymmetric in spatial coordinates. Accordingly its

spin function must be symmetric. Therefore this is the spin- $
#

state, and we designate

its eigenenergy E
$ / #

as
E

$ / #
= H B

" "
. (194)

The representation E is two dimensional ; the basis functions can be formed by

linear combinations of the eigenfunctions belonging to this representation. The
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GHL theory for interatomic interaction 399

eigenvalues are doubly generate and can be obtained from diagonalizing the

Hamiltonian matrix with respect to the basis functions [124, 125]. These wavefunctions

are associated with the doublet spin- "
#

states [126], and we designate the corresponding

eigenenergies E‰.

Putting the representations of equations (182)± (190) into equation (30), we obtain

the following matrix elements of the Hamiltonian :

H A
" "

= e
I
1 e

" #
1 e

" $
1 e

# $
1 e

" # $
1 e

" $ #
, (195)

H B
" "

= e
I
– e

" #
– e

" $
– e

# $
1 e

" # $
1 e

" $ #
, (196)

H E
" "

= e
I
– "

#
e
" #

1 e
" $

– "
#
e
# $

– "
#
e
" # $

– "
#
e
" $ #

, (197)

H E
# #

= e
I
1 "

#
e
" #

– e
" $

1 "
#
e
# $

– "
#
e
" # $

– "
#
e
" $ #

, (198)

H E
" #

=
3 " / #

2
( e

" #
– e

# $
– e

" # $
1 e

" $ #
), (199)

H E
# "

=
3 " / #

2
( e

" #
– e

# $
1 e

" # $
1 e

" $ #
). (200)

Because of the W igner theorem in equation (23), the matrix of the Hamiltonian

with respect to the basis {uE
" "

, uE
" #

, uE
# "

, uE
# #

} is of the form

E

F

H E
# "

H E
" "

0

0

H E
# #

H E
" #

0

0

0

0

H E
" "

H E
# "

0

0

H E
" #

H E
# #

G

H

. (201)

By diagonalizing this matrix, the degenerate eigenenergies are found to be

E ‰ = "
#
{H E

" "
1 H E

# #
‰[(H E

" "
– H E

# #
) # 1 4H E

" #
H E

# "
] " / # }. (202)

W ith equations (197)± (200), this equation becomes

E ‰ = e
I
– e

" # $
‰{ "

#
[( e

" #
– e

# $
) # 1 ( e

# $
– e

$ "
) # 1 ( e

$ "
– e

" #
) # ]}" / # , (203)

where we have used the identity e
" # $

= e
" $ #

.

Substituting e
I

from equation (44) into equation (203), we obtain

E ‰ = 3
n = !

e n – 3
g 1 I

3
n = !

e
g
© U

!
, T(g) U n ª – e

" # $
‰{"

#
[( e

" #
– e

# $
) # 1 ( e

# $
– e

$ "
) # 1 ( e

$ "
– e

" #
) # ]}" / # .

(204)

It should be recalled that e n is the nth-order polarization energy calculated from the

unsymmetrized Rayleigh ± Schro$ dinger perturbation theory. Since U
!

is the product of

three hydrogenic atomic orbitals, e
!

is simply the sum of the energies of the three

isolated hydrogen atoms. Therefore the two lowest sheets of the H
$

potential energy

surfaces are

V‰ = E‰– e
!
. (205)

The ® rst-order polarization energy is simply the sum of the three Coulomb integrals.

The polarization energy of the three-body system consists of the sum of all orders of

the two-body terms which are obtained without considering the presence of the third

atom, and the non-additive three-body terms which do not show up until third order

(for example [127]). The well known Axilrod ± Teller± M uto [128] triple dipole inter-

action is the leading term in the non-additive three-body interaction in the asymptotic
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400 K . T . Tang et al.

region. Similarly, © U
!
, T(g) U n ª can also be separated into two-body and three-body

overlap integrals. The exchange energy e
g
, although formally de® ned by equation (29),

reduces to e
" #

of equation (53) when the third atom is far away. Therefore, if g involves

an interchange of only two indices, then e ij
can be expressed as the exchange energy of

a diatomic system plus terms involving the eŒect of the presence of the third atom [46].

6.2. Generalized Heitler± London theory and semiempirical potential energy surfaces

Because of its completeness, equation (204) provides a benchmark theory, which

will be used here to assess several previous approximate theories.

6.2.1. The London formula

Neglecting in equation (204) ® rstly all overlap integrals, secondly all orders of

polarization energy e n for n " 1, and thirdly all three-body eŒects, we obtain the

doublet potential energy surfaces V‰ from equation (205) :

V‰ = e
"
(R

"
) 1 e

"
(R

#
) 1 e

"
(R

$
)‰

1

2 " / #

3 {[ e
x
(R

"
)– e

x
(R

#
)] # 1 [ e

x
(R

#
)– e

x
(R

$
)] # 1 [ e

x
(R

#
)– e

x
(R

$
)] # }" / # , (206)

where R
"
, R

#
and R

$
are the three internuclear distances. Since without overlap the ® rst

order polarization energy e
"

is the Coulomb integral and the exchange energy e
x

is the

exchange integral, equation (206) is the equation which London [129] reported in 1929

without proof and for which a derivation was later provided by Kassel [130] in 1932.

6.2.2. The Slater formula

Neglecting in equation (204) ® rstly all overlap integrals, secondly all orders of

polarization energy e n for n " 1, and thirdly all three-body eŒects except the exchange

energy e
" # $

coming from the cyclic permutation of electrons, the doublet potential

energy surfaces V‰ become

V‰ = e
"
(R

"
) 1 e

"
(R

#
) 1 e

"
(R

$
)– e

" # $
‰

1

2 " / #

3 {[ e
x
(R

"
)– e

x
(R

#
)] # 1 [ e

x
(R

#
)– e

x
(R

$
)] # 1 [ e

x
(R

$
)– e

x
(R

"
)] # }" / # . (207)

Again identifying e
"

and e
x

as respectively the Coulomb integral and the exchange

integral because the overlap integral is neglected, this is the equation that Slater [131]

derived in 1931 with a diŒerent approach.

6.2.3. The valence bond theory

An approximate expression comparable with the valence bond formula is obtained

from equation (204) by neglecting ® rstly all overlap integrals except s
!
, secondly all

orders of polarization energy e n for n " 1, and thirdly all three-body eŒects

V‰ = 3
$

i = "

[ e
"
(R i) 1 s

!
(R i ) e

x
(R i )]‰

1

2 " / #

3 {[ e
x
(R

"
)– e

x
(R

#
)] # 1 [ e

x
(R

#
)– e

x
(R

$
)] # 1 [ e

x
(R

$
)– e

x
(R

"
)] # }" / # . (208)

Here e
"

and s
!

are identical with the two-body Coulomb integral and the overlap

integral respectively of the H
#

system. This equation should contain the same amount

of information as the valence bond theory. Note that, in equation (208), e
x

is the
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GHL theory for interatomic interaction 401

exchange energy of equation (12) instead of the exchange integral usually used in

valence bond theory. The complete valence bond expression in which the overlap is not

neglected has been derived by Slater [131] and by Eyring and Lin [132]. It looks far

more complicated than equation (208). The diŒerence in the appearance arises

because, if the overlap is not neglected, the exchange energy is not the same as the

exchange integral. This diŒerence has already shown up in the H
#

system. Expressed

in terms of exchange integrals, the H
#

Heitler± London energies are given by equations

(6) and (7) where the overlap integral appears inside a polynomial in the denominator.

Expressed in terms of the exchange energy, the same set of Heitler± London energies is

given by equations (14) and (15) where there is no denominator and the overlap

integral appears in combination with the exchange energy as an additive term. In the

present formulation of the H
$

potential surfaces the overlap integrals also appear as

additive terms as seen in equation (208). The complications in the usual valence bond

H
$

formulation is due to the necessity of combining many terms with polynomials in

the denominator. W hen one atom is far away, the valence bond expression will reduce

directly to equations (6) and (7), whereas the present formulation of equation (208)

will reduce to equations (14) and (15). As we have shown, they are completely

equivalent.

6.2.4. Semiempirical potential surfaces

The celebrated LEPS potential energy surface is based on the valence bond theory.

Eyring and Polanyi [133] implemented the London [129] formula with an approximate

exchange integral. Sato [134] suggested the use of a denominator to simulate the

overlap integrals in the valence bond theory. The LEPS equation has had a tremendous

impact on chemical dynamics and a large amount of work has been devoted to the

improvements of this semiempirical potential surface. One of the best known is the

Porter± Karplus [135] surface. They used the complete valence bond equation including

the Coulomb, the exchange and the overlap integrals. They also tried to include some

three-body eŒects in the exchange integral. This eŒect is diŒerent from the cyclic

exchange e
" # $

in the Slater formula. It comes from the fact that the three electronic

coordinates in the Hamiltonian sandwiched in the exchange integral are scrambled,

even though only two electrons are interchanged in the wavefunction. In their original

version, they introduced some empirical parameters and produced a reasonably

accurate potential surface. However, when the more accurate triplet H
#

energies,

which became available afterwards, were used in their formula, it actually gives a

rather poor surface (for example [136]).

6.2.5. The Cashion± Herschbach formula

Neglecting in equation (204) all three-body eŒects, but including all orders of two-

body terms, we obtain

E ‰ = 3
$

i = "
0 3

n = !

[ e n (R i) 1 e
x
(R i ) sn (R i)]1 ‰

1

2 " / #

3 {[ e
x
(R

"
)– e

x
(R

#
)] # 1 [ e

x
(R

#
)– e

x
(R

$
)] # 1 [ e

x
(R

$
)– e

x
(R

"
)] # }" / # . (209)

Using equation (58), we can write this equation as

E ‰ = e
C
(R

"
) 1 e

C
(R

#
) 1 e

C
(R

$
)‰

1

2 " / #

3 {[ e
x
(R

"
)– e

x
(R

#
)] # 1 [ e

x
(R

#
)– e

x
(R

$
)] # 1 [ e

x
(R

$
)– e

x
(R

"
)] # }" / # . (210)
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Cashion and Herschbach [40] obtained this equation semiempirically. First they

neglected the overlap integrals in the valence bond theory ; so they started out with the

London formula. Then they neglected the overlap integrals again in the Heitler±

London energies of the H
#

molecule. They replaced the Coulomb integral and the

exchange integral by half the sum and diŒerence of the triplet and singlet state energies

of the H
#

molecule. As seen in the present development, in so doing they have

unknowingly included not only the overlap integrals, which they thought were

neglected, but also all orders of the two-body terms. This is because in reality they have

used the Coulomb energy and the exchange energy which contain all orders of the two-

body interactions. Therefore, if the accurate energies of the H
#

molecules are used, this

potential surface should be superior to other semiempirical surfaces based on the

valence bond theory, in which only the ® rst-order Coulomb, the exchange and the

overlap integrals are used.

6.2.6. Diatomic-in-molecule surface

It is interesting to note that the diatomic-in-molecule (DIM) potential energy

surface [137] without overlap is also identical with equation (210) [138]. There are two

versions of DIM surfaces : one with and the other without overlap. Because of the way

that the Hamiltonian is divided and regrouped, the term `overlap ’ in DIM is used in

a somewhat diŒerent context. Experience is that the version without overlap works

better. It is also this version that is identical with equation (210). According to the

present theory, equation (210) already contains all two-body overlaps. The extra

overlap in the other version comes from the implicit assumption of the DIM method.

It is equivalent to regarding e
C

and e
x

in equation (210) as the Coulomb integral and

the exchange integral respectively and then to add overlap integrals to the equation.

This results in double counting.

Since accurate triplet and singlet state energies of the H
#

molecule are now

available, equation (210) is a parameter-free potential surface. Not only does this

surface give a fairly accurate potential in the saddle-point region [40, 137], but

even in the H
#
± H van der W aals region it is not too far from the ab initio surface

[139]. This is to be contrasted with other semiempirical surfaces. For example, the

Porter± Karplus potential surface does not give a well in the van der Waals region

[140]. W hereas other semiempirical surfaces include only ® rst-order quantities,

equation (210) includes all orders of two-body interactions. This explains why it

correctly predicts the van der W aals attraction which is contained in the second-order

polarization energy.

While equation (210) may be su� cient for a qualitative understanding, to achieve

`chemical accuracy ’ it is still necessary to include the three-body eŒects. The GHL

theory enables us to calculate these eŒects systematically. For example, the e
" # $

exchange energy due to cyclic permutation of the three electrons can also be calculated

by the surface integral method [24, 141]. When this term is added to equation (210), the

potential surface for nonlinear con ® gurations is substantially improved [142].

7. Concluding remarks

In this paper we have shown that the complexity of the problem of symmetry in

calculating the interatomic potentials can be reduced to its simplest level by the

irreducible representations of the permutation group, to which the total Hamiltonian

belongs. The eigenenergies of the Hamiltonian are calculated from a set of basis

functions of these representations which are projected out from a localized
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wavefunction obtained from the Schro$ dinger equation with the unsymmetrized

perturbation theory. W hen these eigenenergies are expanded in terms of exchange

integrals order by order, almost all previous SAPTs for diatomic systems are shown to

be subsets of these expansions. Since the lowest order is identical with the usual

Heitler± London energy, we call this theory the GHL theory. The advantage of this

theory is that, instead of exchange integrals, the exchange energy obtained from the

surface integral method can be used directly. According to the GHL theory, the van

der W aals potentials depend only on the known dispersion coe� cients, the amplitude

of the asymptotic wavefunctions, and the ionization energies of the individual atoms.

W ith these atomic parameters, potential curves with well minimum ranging from

0.4 3 10 Õ & (Cs± He) to 40 3 10 Õ & (Ar
#
) are predicted with a simple expression to a high

degree of accuracy. This strongly suggests that the essential physics of the interaction

are included in the GHL theory and the surface integral method is an e� cient way to

calculate the exchange repulsion.

The GHL theory can also be used to ® nd a systematic way to study triatomic

potential energy surfaces. The GHL theory of the H
$

potential surface, just like its

counterpart for diatomic systems, is very useful in summarizing previous theories and

pointing the direction for further improvement. In this way we have gained direct

insight into the basic structure of the H
$

potential energy terms. Clearly the Sn

permutation group can be applied equally well to H n systems. A calculation of the

energy surface of H
%

using the method described here is at present in progress [142]. We

envisage that ultimately a more clear picture of the potentials of small open-shell

clusters will emerge through this line of investigation.
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